First Aggregation of L-Cysteinato Cobalt(III) Octahedrons Assisted by Trigonal-Planar Silver(I) and Trigonal-Prismatic Sodium(I) Ions

Takumi Konno,* Tatsuya Kawamoto, Rie Kuwabara,[†] Takashi Yoshimura,[†] and Masakazu Hirotsu[†] Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 [†]Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515

(Received November 5, 2001; CL-011104)

The reaction of Δ_L -[Co(L-Hcys-*N*, *S*)(en)₂](ClO₄)₂ with NaOH and AgClO₄ in a 2 : 2 : 1 ratio in water gave a 2 : 1 (Co:Ag) adduct, $(\Delta_L)_2$ -[Ag{Co(L-cys-*N*, *S*)(en)₂}₂]³⁺ ((Δ_L)₂-[1]³⁺), while the corresponding reaction with AgNO₃ led to the isolation of a 3 : 1 adduct, $(\Delta_L)_3$ -[AgNa{Co(L-cys-*N*, *S*)-(en)₂}₃]⁵⁺ ((Δ_L)₃-[2]⁵⁺). The discrete trinuclear structure in $(\Delta_L)_2$ -[1]³⁺ and the 2D polymeric structure in $(\Delta_L)_3$ -[2]⁵⁺ were determined by X-ray crystallography.

While it has been recognized that a single thiolato group in some mono(thiolato)-type cobalt(III) complex tends to bind with soft metal ions such as Ag^{I} , Cu^{I} , Pt^{II} , and Hg^{II} to form S-bridged structures,¹ only a few polynuclear complexes composed of $[Co(aet)(en)_2]^{2+}$ (aet = 2-aminoethanethiolate) or $[Co(SCH_2 -$ COO)(en)₂]⁺ units have been isolated and characterized for over 20 years.² Recently, we have found that the reaction of $[Co(aet)(en)_2]^{2+}$ with AgNO₃ in a 1 : 1 ratio gave a 1D zigzag chain complex-polymer, $[Ag{Co(aet)(en)_2}](NO_3)_3$, in which the same configurational (Δ or Λ) [Co(aet)(en)₂]²⁺ units are linked by Ag^I ions through μ_3 -thiolato S atoms.³ A similar Co^{III}Ag^I chain complex-polymer was expected to be formed by using Λ_L or Δ_{L} -[Co(L-cys-N, S)(en)₂]⁺ (L-cys = L-cysteinate) instead of $[Co(aet)(en)_2]^{2+}$. However, the corresponding 1 : 1 reactions were found to produce a 2D sheetlike structure in Λ_L -[Ag{Co(L $cys-N, S)(en)_2$ (NO₃)₂ and a 1D left-handed helical structure in Δ_{L} -[Ag{Co(L-cys-N, S)(en)₂}](NO₃)₂, owing to the bonding interaction of the COO⁻ group in each Λ_L - or Δ_L -[Co(L-cys-N, S)(en)₂]⁺ unit with Ag^I ion.⁴ This result suggested that the introduction of the simple L-cys ligand having a free COOgroup, in place of the aet ligand, results in highly organized chiral molecular architectures. We therefore decided to investigate the reactions of Λ_L - or Δ_L -[Co(L-cys-N, S)(en)₂]⁺ with Ag⁺ by changing the reaction stoichiometry and counter anions, in order to find the key factors to control supramolecular structures based on metal octahedrons. Here we report that the 2:2:1 reaction of Δ_{L} -[Co(L-Hcys-N, S)(en)₂](ClO₄)₂ with NaOH and AgNO₃ produces a novel 2D aggregate containing Δ_L -[Co(L-cys- $[N, S)(en)_2]^+$ units and Ag^I ions in a 3:1 ratio, $(\Delta_L)_3$ - $[AgNa{Co(L-cys-N, S)(en)_2}_3]^{5+} ((\Delta_L)_3-[2]^{5+})$, while the corresponding reaction with AgClO₄ gives an expected 2 : 1 adduct, $(\Delta_{\rm L})_2$ -[Ag{Co(L-cys-N, S)(en)_2}]³⁺ (($\Delta_{\rm L})_2$ -[1]³⁺), the structure of which corresponds well with that of the known S-bridged trinuclear complex, $[Ag{Co(aet)(en)_2}_2]^{5+}$.

Treatment of a dark-brown aqueous solution of Δ_L -[Co(L-Hcys-*N*, *S*)(en)₂](ClO₄)₂·H₂O⁵ with 1 molar equiv of NaOH and 0.5 molar equiv of AgClO₄ at room temperature gave a dark-red solution, from which dark-red crystals ((Δ_L)₂-[1](ClO₄)₃·4H₂O) were obtained by adding an aqueous solution of NaClO₄ (59%)

yield). The elemental and plasma emission analyses of this red product are in good agreement with the formula for the 2 : 1 adduct of Δ_L -[Co(L-cys-N, S)(en)₂]⁺ and Ag^{I.6} Single-crystal X-ray analysis demonstrated that $(\Delta_L)_2$ -[1]³⁺ is an expected S-bridged Co^{III}Ag^ICo^{III} trinuclear complex, $(\Delta_L)_2$ -[Ag{Co(L-cys-N, S)(en)₂}₂]³⁺, in which the central Ag^I atom is coordinated by two thiolato S atoms from two octahedral Δ_L -[Co(L-cys-N, S)(en)₂]⁺ units (average Co–S = 2.257(5) Å, Ag–S = 2.383(5) Å, S–Ag–S = 165.4(2)°).⁷ The overall structure in $(\Delta_L)_2$ -[1]³⁺ is very similar to that found in [Ag{Co(aet)(en)₂}₂]⁵⁺ (Co–S = 2.259(2) Å, Ag–S = 2.400(1) Å, S–Ag–S = 164.50(8)°),^{2b.3} except the presence of free COO⁻ groups.

A similar 2 : 2 : 1 reaction of Δ_{L} -[Co(L-Hcys-N, S)(en)₂]-(ClO₄)₂·H₂O with NaOH and AgNO₃ also gave a dark-red solution, and its absorption spectrum was the same as the reaction solution with AgClO₄. However, the addition of an aqueous solution of NaNO3 to this reaction solution led to the isolation of dark-red crystals ($(\Delta_L)_3$ -[2](NO₃)₄(ClO₄)·3H₂O; 40% yield), analyzing as the 3:1 adduct {[Co(L-cys-N,S)(en)₂]- $(NO_3)_3 \cdot AgNO_3 \cdot NaClO_4 \cdot 3H_2O^8$ Consistent with this, $(\Delta_L)_3$ - $[2](NO_3)_4(ClO_4) \cdot 3H_2O$ was also obtained by treating an aqueous solution of Δ_{L} -[Co(L-Hcys-N, S)(en)₂](ClO₄)₂·H₂O with NaOH and AgNO₃ in a 3:3:1 ratio (71% yield). The solid-state absorption spectrum (nujol paste) of this product shows a broad dd absorption band at higher energy $(20.70 \times 10^3 \, \text{cm}^{-1})$ than the d-d band for $(\Delta_L)_2$ -[1](ClO₄)₃·4H₂O (20.08 × 10³ cm⁻¹), while their absorption and CD spectra in water are essentially identical.6,8

The crystal structure of $(\Delta_L)_3$ -[2](NO₃)₄(ClO₄)·3H₂O was established by X-ray analysis, which revealed the presence of an asymmetric unit consisting of one third of $(\Delta_L)_3$ -[AgNa{Co(Lcys-N, S)(en)₂}₃]⁵⁺, four thirds of NO₃⁻, one third of ClO₄⁻, and a water molecule.⁹ As shown in Figure 1, the octahedral Δ_{L} - $[Co(L-cys-N, S)(en)_2]^+$ unit (Co-S = 2.255(2) Å) is bound to a Na^I ion through carboxylate O atom (Na–O = 2.376(6) Å), besides to a Ag^{I} ion through thiolato S atom (Ag-S = 2.519(2) Å); Ag^I and Na^I ions lie on the three-fold rotation axis. In the extended structure, each Ag^I ion is coordinated by three S atoms from three Δ_{L} -[Co(L-cys-N, S)(en)₂]⁺ units in a trigonalplanar geometry (Ag–S–Ag = $113.22(4)^{\circ}$), while each Na^I ion is coordinated by six O atoms from three Δ_{L} -[Co(L-cys- $[N, S)(en)_2$ ⁺ units and three water molecules in a trigonalprismatic environment $(O-Na-O = 75.2(2)^{\circ}, 79.5(3)^{\circ},$ $95.9(2)^{\circ}$, 118.8(2)°, 144.6(2)°). As a result, in $(\Delta_L)_3$ -[2]⁵⁺, the $\Delta_{\rm L}$ -[Co(L-cys-N, S)(en)₂]⁺ units are linked alternatively by Ag^I and Na^I ions to construct a 2D honey-comb layer structure, in which three Ag^I and three Na^I ions form a hexagon (Figure 2). To the best of our knowledge, this is the first chiral extended structure consisting of three kinds of metal ions,¹⁰ and furthermore, the

Figure 1. An ORTEP plot of the asymmetric unit for the complex cation $(\Delta_L)_3$ -[**2**]⁵⁺.

Figure 2. A perspective view for $(\Delta_L)_3$ -[**2**](NO₃)₄(ClO₄) along the *c* direction. Only the nitrate anion located at the center of each hexagon is presented for clarity.

trigonal-planar geometry of Ag^I ion that bridges three hetero metal centers through thiolato S atoms is quite rare.¹¹ Here, it should be noted that one NO₃⁻ ion is situated at the center of each hexagon. Since the formation of $(\Delta_L)_3$ -[2]⁵⁺ was not recognized for the reaction of Δ_L -[Co(L-Hcys-*N*, *S*)(en)₂](ClO₄)₂·H₂O with NaOH and AgClO₄, the presence of NO₃⁻ ion, the size of which is best fitted for the cavity of the hexagon, would stabilize the honey-comb structure of [2]⁵⁺ in crystal.

In summary, treatment of Δ_L -[Co(L-cys-*N*, *S*)(en)₂]⁺ with AgNO₃ in the presence of Na⁺ was found to give the unique Co^{III}₃Ag^INa^I coordination polymer (Δ_L)₃-[**2**]⁵⁺, besides the discrete Co^{III}Ag^ICo^{III} trinuclear complex (Δ_L)₂-[**1**]³⁺. This result demonstrates that Δ_L -[Co(L-cys-*N*, *S*)(en)₂]⁺ functions not only as a simple monodentate-*S* complex-ligand, but also as a bridging bidentate-*O*, *S* complex-ligand with use of both the

coordinated thiolato S and the free carboxylate O atoms. Thus, a variety of chiral supramolecular architectures consisting of 'soft' and 'hard' metal ions could be systematically created from simple (L-cysteinato)cobalt(III) complexes by the control of the reaction stoichiometry with metal ions and the choice of counter anions of supramolecules.

References and Notes

- 1 M. J. Heeg, E. L. Blinn, and E. Deutsch, *Inorg. Chem.*, **24**, 1118 (1985).
- 2 a) R. H. Lane, N. S. Pantaleo, J. K. Farr, W. M. Coney, and M. G. Newton, *J. Am. Chem. Soc.*, **100**, 1610 (1978). b) M. J. Heeg, R. C. Elder, and E. Deutsch, *Inorg. Chem.*, **18**, 2036 (1979). c) M. J. Heeg, R. C. Elder, and E. Deutsch, *Inorg. Chem.*, **19**, 554 (1980).
- 3 T. Konno, K. Tokuda, K. Okamoto, and M. Hirotsu, *Chem. Lett.*, **2000**, 1258.
- 4 T. Konno, T. Yoshimura, K. Aoki, K. Okamoto, and M. Hirotsu, *Angew. Chem., Int. Ed.*, **40**, 1765 (2001).
- 5 H. C. Freeman, C. J. Moore, W. G. Jackson, and A. M. Sargeson, *Inorg. Chem.*, **17**, 3513 (1978).
- 6 Anal. Calcd for [1](ClO₄)₃·4H₂O: C, 15.64; H, 4.69; N, 13.01; Co, 10.96; Ag, 10.04%. Found: C, 15.72; H, 4.70; N, 12.90; Co, 11.02; Ag, 9.71%. Visible-UV spectrum in H₂O [σ_{max}, 10³ cm⁻¹ (log ε, mol⁻¹ dm³ cm⁻¹)]: 19.98 (2.46), 28.3 (2.9 sh), 34.92 (4.35). The sh label denotes a shoulder. CD spectrum in H₂O [σ_{max}, 10³ cm⁻¹ (Δε, mol⁻¹ dm³ cm⁻¹)]: 19.40 (-5.56), 24.60 (+4.77), 34.84 (-6.70), 47.39 (+37.0). This complex was also produced even when Δ_L-[Co(L-Hcys-*N*, *S*)(en)₂](ClO₄)₂·H₂O was treated with AgClO₄ in a 3 : 1 ratio.
- 7 Crystal Data for $(\Delta_L)_2$ -[1](ClO₄)₃·4H₂O: fw = 1074.8 (C₁₄H₅₀AgCl₃Co₂N₁₀O₂₀S₂), monoclinic, C2, a = 15.497(7) Å, b = 9.412(1) Å, c = 25.872(2) Å, $\beta = 95.40(2)^\circ$, V = 3760(2) Å³, Z = 4, $D_c = 1.90$ g cm⁻³, $R(R_w) = 0.057(0.067)$ for 3976 reflections with $I > 2.0\sigma(I)$.
- 8 Anal. Calcd for $[2](NO_3)_4(ClO_4) \cdot 3H_2O: C, 17.67; H, 4.87; N, 18.65; Co, 12.39; Ag, 7.56%. Found: C, 17.61; H, 4.64; N, 18.47; Co, 12.64; Ag, 7.39%. Visible-UV spectrum in H₂O [<math>\sigma_{max}$, 10³ cm⁻¹ (log ε , mol⁻¹ dm³ cm⁻¹)]: 20.04 (2.61), 26.85 (3.0 sh), 35.06 (4.54). The sh label denotes a shoulder. CD spectrum in H₂O [σ_{max} , 10³ cm⁻¹ ($\Delta\varepsilon$, mol⁻¹ dm³ cm⁻¹]: 19.34 (-8.88), 24.51 (+7.09), 35.24 (-11.28), 47.44 (+60.0).
- 9 Crystal data for $(\Delta_L)_3$ -[2](NO₃)₄(ClO₄)·3H₂O, fw = 475.1 (C₇H₂₃Ag_{1/3}Cl_{1/3}CoN_{19/3}Na_{1/3}O_{25/3}S), hexagonal, *P*6₃, a = 13.864(2) Å, c = 15.023(2) Å, V = 2500.8(8) Å³, Z = 6, $D_c = 1.89$ g cm⁻³, $R(R_w) = 0.036(0.038)$ for 1758 reflections with $I > 2.0\sigma(I)$.
- 10 Recently, discrete chiral octanuclear complexes consisting of three kinds of metal ions (Co^{III}, Pd^{II}, and Ag^I or Au^I) have been reported. T. Konno, Y. Chikamoto, K. Okamoto, T. Yamaguchi, T. Ito, and M. Hirotsu, *Angew. Chem., Int. Ed.*, **39**, 4098 (2000).
- 11 In the Cambridge Structural Database, we found only one example; a discrete thiolato bridged Rh^{III}₄Ag^I₅ nonanuclear complex [Ag₅{Rh(aet)₃}₄]⁵⁺, containing both two-coordinated and three-coordinated Ag^I ions. T. Konno and K. Okamoto, *Inorg. Chem.*, **36**, 1403 (1997).